791 research outputs found

    Dimensional reduction and a Z(3) symmetric model

    Full text link
    We present first results from a numerical investigation of a Z(3) symmetric model based on dimensional reduction.Comment: Talk presented at XXI International Symposium on Lattice Field Theory lattice2003(Non-zero temperature and density

    N=1 Supersymmetric Spin-Charge Separation in effective gauge theories of planar magnetic superconductors

    Full text link
    We present a N=1 Supersymmetric extension of a spin-charge separated effective SU(2)×US(1)SU(2)\times U_S(1) `particle-hole' gauge theory of excitations about the nodes of the gap of a d-wave planar magnetic superconductor. The supersymmetry is achieved without introducing extra degrees of freedom, as compared to the non-supersymmetric models. The only exception, the introduction of gaugino fieds, finds a natural physical interpretation as describing interlayer coupling in the statistical model. The low-energy continuum theory is described by a relativistic (2+1)-dimensional supersymmetric CP1CP^1 σ\sigma-model with Gross-Neveu-Thirring-type four-fermion interactions. We emphasize the crucial r\^ole of the CP1CP^1 constraint in inducing a non-trivial dynamical mass generation for fermions (and thus superconductivity), in a way compatible with manifest N=1 supersymmetry. We also give a preliminary discussion of non-perturbative effects. We argue that supersymmetry suppresses the dangerous for superconductivity instanton contributions to the mass of the perturbatively massless gauge boson of the unbroken U(1) subgroup of SU(2). Finally, we point out the possibility of applying these ideas to effective gauge models of spin-charge separation in one-space dimensional superconducting chains of holons, which, for example, have recently been claimed to be important in the stripe phase of underdoped cuprates.Comment: 19 pages LATEX (minor misprints in formula (43) corrected

    Application of a multi-site mean-field theory to the disordered Bose-Hubbard model

    Full text link
    We present a multi-site formulation of mean-field theory applied to the disordered Bose-Hubbard model. In this approach the lattice is partitioned into clusters, each isolated cluster being treated exactly, with inter-cluster hopping being treated approximately. The theory allows for the possibility of a different superfluid order parameter at every site in the lattice, such as what has been used in previously published site-decoupled mean-field theories, but a multi-site formulation also allows for the inclusion of spatial correlations allowing us, e.g., to calculate the correlation length (over the length scale of each cluster). We present our numerical results for a two-dimensional system. This theory is shown to produce a phase diagram in which the stability of the Mott insulator phase is larger than that predicted by site-decoupled single-site mean-field theory. Two different methods are given for the identification of the Bose glass-to-superfluid transition, one an approximation based on the behaviour of the condensate fraction, and one of which relies on obtaining the spatial variation of the order parameter correlation. The relation of our results to a recent proposal that both transitions are non self-averaging is discussed.Comment: Accepted for publication in Physical Review

    Effective Theory of Wilson Lines and Deconfinement

    Get PDF
    To study the deconfining phase transition at nonzero temperature, I outline the perturbative construction of an effective theory for straight, thermal Wilson lines. Certain large, time dependent gauge transformations play a central role. They imply the existence of interfaces, which can be used to determine the form of the effective theory as a gauged, nonlinear sigma model of adjoint matrices. Especially near the transition, the Wilson line may undergo a Higgs effect. As an adjoint field, this can generate eigenvalue repulsion in the effective theory.Comment: 6 pages, LaTeX. Final, published version. Refs. 7, 39, and 40 added. In Ref. 37, there is an expanded discussion of a "fuzzy" bag mode

    Multi-site mean-field theory for cold bosonic atoms in optical lattices

    Full text link
    We present a detailed derivation of a multi-site mean-field theory (MSMFT) used to describe the Mott-insulator to superfluid transition of bosonic atoms in optical lattices. The approach is based on partitioning the lattice into small clusters which are decoupled by means of a mean field approximation. This approximation invokes local superfluid order parameters defined for each of the boundary sites of the cluster. The resulting MSMFT grand potential has a non-trivial topology as a function of the various order parameters. An understanding of this topology provides two different criteria for the determination of the Mott insulator superfluid phase boundaries. We apply this formalism to dd-dimensional hypercubic lattices in one, two and three dimensions, and demonstrate the improvement in the estimation of the phase boundaries when MSMFT is utilized for increasingly larger clusters, with the best quantitative agreement found for d=3d=3. The MSMFT is then used to examine a linear dimer chain in which the on-site energies within the dimer have an energy separation of Δ\Delta. This system has a complicated phase diagram within the parameter space of the model, with many distinct Mott phases separated by superfluid regions.Comment: 30 pages, 23 figures, accepted for publication in Phys. Rev.

    Dynamical Gauge Symmetry Breaking and Superconductivity in three-dimensional systems

    Get PDF
    We discuss dynamical breaking of non-abelian gauge groups in three dimensional (lattice) gauge systems via the formation of fermion condensates. A physically relevant example, motivated by condensed-matter physics, is that of a fermionic gauge theory with group SU(2)⊗US(1)⊗UE(1)SU(2)\otimes U_S(1) \otimes U_{E}(1). In the strong U_S(1) region, the SU(2) symmetry breaks down to a U(1), due to the formation of a parity-invariant fermion condensate. We conjecture a phase diagram for the theory involving a critical line, which separates the regions of broken SU(2) symmetry from those where the symmetry is restored. In the broken phase, the effective Abelian gauge theory is closely related to an earlier model of two-dimensional parity-invariant superconductivity in doped antiferromagnets. The superconductivity in the model occurs in the Kosterlitz-Thouless mode, since strong phase fluctuations prevent the existence of a local order parameter. Some physical consequences of the SU(2)×US(1)SU(2) \times U_S(1) phase diagram for the (doping-dependent) parameter space of this condensed-matter model are briefly discussed.Comment: 17 pages Latex, 1 macro, three figures (included) (minor typo on page 14 concerning the critical coupling of SU(2) corrected
    • …
    corecore